LeetCode63-不同路径II

参考文章:代码随想录https://programmercarl.com/0063.%E4%B8%8D%E5%90%8C%E8%B7%AF%E5%BE%84II.html

一、题目

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

robot1

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

robot2

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j] 为 0 或 1

来源:力扣(LeetCode)

链接:https://leetcode.cn/problems/unique-paths-ii

二、题解

本题在 T62 不同路径的基础上增加了障碍,有障碍的话,其实就是标记对应的 dp table(dp 数组)保持初始值 0 就可以了。

dp 数组的确定及其含义、dp 数组的遍历和打印 dp 数组都与 T62 是一样的,只有确定递推公式和 dp 数组的初始化相比 T62 有一些变化

在确定递推公式时,注意一点,因为有了障碍,(i, j) 如果就是障碍的话应该就保持初始状态(初始状态为 0)。其余没有障碍的地方,仍是 dp[i][j] = dp[i - 1][j] + dp[i][j - 1]

初始化 dp 数组时,不能再直接将 dp[i][0] 和 dp[0][j] 初始化为 1,因为(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的 dp[i][0] 应该还是初始值 0。下标 (0, j) 的初始化情况同理

三、代码

public class T63 {
    // 二维dp数组
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int m = obstacleGrid.length;
        int n = obstacleGrid[0].length;

        // 如果在起点或终点出现了障碍,直接返回0
        if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1)
            return 0;

        int[][] dp = new int[m][n];
        for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {
            dp[i][0] = 1;
        }
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {
            dp[0][j] = 1;
        }

        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                if (obstacleGrid[i][j] == 0)
                    dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
                else
                    dp[i][j] = 0; // 也可写continue,因为数组默认初始化为0
            }
        }
        return dp[m - 1][n - 1];
    }

    // 一维dp数组
    public int uniquePathsWithObstacles2(int[][] obstacleGrid) {
        if (obstacleGrid[0][0] == 1) return 0;

        int n = obstacleGrid[0].length;
        int[] dp = new int[n];
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {
            dp[j] = 1;
        }

        for (int i = 1; i < obstacleGrid.length; i++) {
            for (int j = 0; j < n; j++) {
                if (obstacleGrid[i][j] == 1) {
                    dp[j] = 0;
                } else if (j != 0) {
                    dp[j] = dp[j -1] + dp[j];
                }
            }
        }
        return dp[n - 1];
    }
}
暂无评论

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
颜文字
Emoji
小恐龙
花!
上一篇
下一篇